23. Taylor Series

e. Taylor Remainder

Taylor Remainder Inequality
If aa is in an open interval II and Mf(k+1)(c)M \ge |f^{(k+1)}(c)| for all cc in the interval II, then the Taylor remainder of degree kk centered at x=ax=a satisfies Rkf(x)M(k+1)!xak+1 |R_k f(x)| \le \dfrac{M}{(k+1)!}|x-a|^{k+1} for all xx in the interval II. The quantity on the right is called the Taylor bound on the remainder.

3. Convergence Proofs

To prove the Taylor series for f(x)f(x) converges to f(x)f(x), it suffices to prove the limit of the Taylor remainders is 00: limkRkf(x)=0 \lim_{k\rightarrow\infty}R_k f(x)=0

There are a couple of technical points which need to be discussed before we start the proof. We need to distinguish between a function f(x)f(x) and the sum of its Taylor series which we denote by Tf(x)Tf(x). We know that the Taylor series converges to Tf(x)Tf(x) but we do not yet know that it converges to f(x)f(x). Thus, the Taylor series is: Tf(x)=n=0f(n)(a)n!(xa)n Tf(x)=\sum_{n=0}^\infty \dfrac{f^{(n)}(a)}{n!}(x-a)^n Further, if the Taylor series is approximated by the kthk^\text{th} Taylor polynomial Tkf(x)=n=0kf(n)(a)n!(xa)n T_k f(x)=\sum_{n=0}^k \dfrac{f^{(n)}(a)}{n!}(x-a)^n then the error in the approximation is Ek=Tf(x)Tkf(x)=n=k+1f(n)(a)n!(xa)n E_k=Tf(x)-T_k f(x) =\sum_{n=k+1}^\infty \dfrac{f^{(n)}(a)}{n!}(x-a)^n This needs to be distinguished from the Taylor remainder which is defined to be: Rkf(x)=f(x)Tkf(x) R_k f(x)=f(x)-T_k f(x) using f(x)f(x) instead of Tf(x)Tf(x). It is Rkf(x)R_k f(x) which appears in the Lemma as well as the Taylor Remainder Formula and the Taylor Remainder Inequality.

To prove the Taylor series for f(x)f(x) converges to f(x)f(x), we need to show the partial sums (the Taylor polynomials) converge to f(x)f(x): limkTkf(x)=f(x) \lim_{k\rightarrow\infty}T_k f(x)=f(x) Subtracting each side from f(x)f(x), this is equivalent to: limk[f(x)Tkf(x)]=0 \lim_{k\rightarrow\infty}\left[f(x)-T_k f(x)\right]=0 or limkRkf(x)=0 \lim_{k\rightarrow\infty}R_k f(x)=0

Prove that the Maclaurin series for f(x)=sinxf(x)=\sin x converges to sinx\sin x for all real numbers xx.

The Taylor series is: Tf(x)=n=0(1)n(2n+1)!x2n+1 Tf(x)=\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)!}x^{2n+1} and the kthk^\text{th} partial sum is the Taylor polynomial of degree 2k+12k+1: T2k+1f(x)=n=0k(1)n(2n+1)!x2n+1 T_{2k+1}f(x)=\sum_{n=0}^k \dfrac{(-1)^n}{(2n+1)!}x^{2n+1} and the Taylor remainder is: R2k+1f(x)=sinxn=0k(1)n(2n+1)!x2n+1 R_{2k+1}f(x)=\sin x-\sum_{n=0}^k \dfrac{(-1)^n}{(2n+1)!}x^{2n+1} To show the remainders converge to 00, we use the Taylor bound on the remainder. For f(x)=sinxf(x)=\sin x, the (2k+2)nd(2k+2)^\text{nd} derivative is either sinx\sin x or sinx-\sin x. In either of these cases, f(2k+2)(x)1|f^{(2k+2)}(x)| \le 1. So we take M=1M=1. Thus, R2k+1f(x)M(2k+2)!x2k+2=x2k+2(2k+2)! |R_{2k+1}f(x)| \le \dfrac{M}{(2k+2)!}|x|^{2k+2} =\dfrac{|x|^{2k+2}}{(2k+2)!} and so limkR2k+1f(x)limkx2k+2(2k+2)!=0 \lim_{k\rightarrow\infty}|R_{2k+1}f(x)| \le \lim_{k\rightarrow\infty}\dfrac{|x|^{2k+2}}{(2k+2)!}=0

We'll show limnxnn!=0\displaystyle \lim_{n\rightarrow\infty}\dfrac{|x|^n}{n!}=0.
Pick an integer N>2xN>2|x|. Then x<N2|x| \lt \dfrac{N}{2}.
Now if p>Np>N, then 1p<1N\dfrac{1}{p} \lt \dfrac{1}{N} and xp<N2N=12\dfrac{|x|}{ p}<\dfrac{N}{2N}=\dfrac{1}{2}.
We now compute (with n>Nn>N) limnxnn!=limnx1x2xNxN+1xn=xNN!limnxN+1xn<xNN!limn(12)nN=0\begin{aligned} \lim_{n\rightarrow\infty}\dfrac{|x|^n}{n!} &=\lim_{n\rightarrow\infty}\dfrac{|x|}{1}\dfrac{|x|}{2} \cdots\dfrac{|x|}{N}\dfrac{|x|}{N+1}\cdots\dfrac{|x|}{n} \\ &=\dfrac{|x|^N}{N!}\lim_{n\rightarrow\infty}\dfrac{|x|}{N+1}\cdots\dfrac{|x|}{n} \\ &\lt \dfrac{|x|^N}{N!}\lim_{n\rightarrow\infty}\left(\dfrac{1}{2}\right)^{n-N}=0 \end{aligned}

[×]

This shows limkR2k+1f(x)=0\displaystyle \lim_{k\rightarrow\infty}R_{2k+1}f(x)=0, and hence, the Taylor series for sinx\sin x converges to sinx\sin x.

Prove that the Maclaurin series for f(x)=e2xf(x)=e^{2x} converges to e2x e^{2x} for all real numbers xx.

Hint

Let NN be a number >x\gt |x|. Find the Taylor bound on the remainder for the interval (N,N)(-N,N)

[×]

Solution

To show limkRkf(x)=0\displaystyle \lim_{k\rightarrow\infty}R_k f(x)=0, we use the Taylor bound on the remainder. Let NN be a number >x\gt |x|. Consider the interval (N,N)(-N,N). For f(x)=e2xf(x)=e^{2x}, we have f(k+1)(x)=2k+1e2xf^{(k+1)}(x)=2^{k+1}e^{2x}. So, f(k+1)(x)2k+1e2N|f^{(k+1)}(x)| \le 2^{k+1}e^{2N}. So we take M=2k+1e2NM=2^{k+1}e^{2N}. Thus, Rkf(x)M(k+1)!xk+1=e2N2xk+1(k+1)! |R_k f(x)| \le \dfrac{M}{(k+1)!}|x|^{k+1} =\dfrac{e^{2N}|2x|^{k+1}}{(k+1)!} and so limkRkf(x)e2Nlimk2xk+1(k+1)!=0 \lim_{k\rightarrow\infty}|R_k f(x)| \le e^{2N}\lim_{k\rightarrow\infty}\dfrac{|2x|^{k+1}}{(k+1)!}=0

[×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255